

Why Rectified Flow is Better? Elucidating VP, VE and RF-based diffusion models

Ruofeng Yang

Shanghai Jiao Tong University Supervisor: Shuai Li

The Paradigm of Diffusion Models

A forward process and a Reverse Process

The general forward process:

$$dX_t = f(X_t, t)dt + g(t)dB_t, X_0 \sim q_0 \in \mathbb{R}^d$$

Common forward processes:

- Variance Preserving (VP): $f(X_t, t) = -\frac{1}{2}X_t, g(t) = 1$
- Variance Exploding (VE (SMLD)): $f(X_t, t) = 0$, $g(t) = \sqrt{2}$
- Variance Exploding (VE (EDM)): $f(X_t, t) = 0$, $g(t) = \sqrt{2t}$
- Rectified Flow: $X_t = (1-t)X_0 + tZ$, $t \in [0,1]$

The Reverse Process

$$Y_{t'} = \left[f(Y_{t'}, T - t') - \frac{1 + \eta^2}{2} g^2(T - t') \nabla \log q_{T - t'}(Y_{t'}) \right] dt' + \eta g(T - t') dB_{t'}, \eta \in [0, 1]$$

• $\eta = 1 \rightarrow$ Reverse SDE; $\eta = 0 \rightarrow$ Reverse probability flow ODE (PFODE)

Motivations

- In the early year, many works adopt VP (SDXL) and VE (EDM).
- Since last year, RF becomes the main choice in computer vision and audio.
 - Image: SD 3, FLUX, Qwen-Image
 - Video: Seeddance, Wan 2.2
 - Video-audio joint generation: Veo3

Motivations

Why VE (EDM) is comparable with VP and RF is better?

Sample Complexity for Diffusion Models

Assume an accurate enough score function

$$\left\|\log q_t(X,t) - s_{\phi}(X,t)\right\|_2^2 \le \epsilon_{score}^2$$

The sample complexity K to guarantee $Dis(p_{t_K}, q_0) \leq \epsilon$.

Overview

General Guarantee (Reverse SDE)

Theorem. Under the bounded support assumption, for diffusion models

- ullet Balance: (a) T determined by the first term (b) discretization depends on T
- ullet Influence by early stopping parameter δ

Discussion on Diffusion Time T

$$\begin{split} \mathrm{KL}(p_{T-\delta},q_{\delta}) &\leq \bar{D}^2 m_T/\sigma_T^2 + d^2 (T/\delta)^{\frac{1}{a}}/K \leq \tilde{O}\left(\epsilon_{\mathrm{KL}}^2\right) \\ \mathrm{W}_2^2(q_0,q_{\delta}) &\leq \sigma_{\delta}^2 \leq \epsilon_{W_2}^2 \\ &? \end{split}$$

$$\mathrm{KL}(p_{T-\delta}, q_{\delta}) \leq \bar{D}^2 m_T / \sigma_T^2 + d^2 (T/\delta)^{\overline{a}} / K$$

- VP enjoy an exponential-decay first term $m_T = e^{-T}$ and $\sigma_T = 1 \to A$ logarithmic $T = \log(1/\epsilon_{TV})$
- VE has a polynomial-decay one $m_T=1$ and $\sigma_T^2=poly(T) o$ Large sample complexity

Discussion on Early Stopping δ

$$\begin{split} \mathrm{KL}(p_{T-\delta},q_{\delta}) &\leq \bar{D}^2 m_T/\sigma_T^2 + d^2 (T/\delta)^{\frac{1}{a}}/K \leq \tilde{O}\left(\epsilon_{\mathrm{KL}}^2\right) \\ \mathrm{W}_2^2(q_0,q_{\delta}) &\leq \sigma_{\delta}^2 \leq \epsilon_{W_2}^2 \\ &? \end{split}$$

$$W_2^2(q_0, q_\delta) \le \sigma_\delta^2 \le \epsilon_{W_2}^2$$

- For VP, $\sigma_\delta^2 = \delta \to \delta = \epsilon_{W_2}^2$
- For VE (EDM), $\sigma_\delta^2 = \delta^2 \to \delta = \epsilon_{W_2}$
- VP better in T and VE (EDM) better in $\delta \to The$ same order results

VP:
$$K = O\left(1/\epsilon_{\text{KL}}^2 \epsilon_{W_2}^{2/a}\right)$$
, VE (EDM) $K = O\left(1/\epsilon_{\text{KL}}^{2+1/a} \epsilon_{W_2}^{1/a}\right)$

Worst of Both World: VE (SMLD)

$$\begin{split} \operatorname{KL}(p_{T-\delta},q_{\delta}) &\leq \bar{D}^2 m_T/\sigma_T^2 + d^2 (T/\delta)^{\frac{1}{a}}/K \leq \tilde{O}\left(\epsilon_{\mathrm{KL}}^2\right) \\ \operatorname{W}_2^2(q_0,q_{\delta}) &\leq \sigma_{\delta}^2 \leq \epsilon_{W_2}^2 \\ &? \end{split}$$

- For VE (SMLD), $\,\sigma_\delta^2=\delta o \delta=\epsilon_{W_2}^2$ and $m_T=1$, $\sigma_T^2=T$
- Bad in T and δ at the same time $\to O\left(1/\epsilon_{\mathrm{KL}}^{2+2/a}\epsilon_{W_2}^{2/a}\right)$

VP:
$$K = O\left(1/\epsilon_{KL}^2 \epsilon_{W_2}^{2/a}\right)$$
, VE (EDM) $K = O\left(1/\epsilon_{KL}^{2+1/a} \epsilon_{W_2}^{1/a}\right)$

Best of Both World: Rectified Flow

$$\begin{split} \mathrm{KL}(p_{T-\delta},q_{\delta}) &\leq \bar{D}^2 m_T/\sigma_T^2 + d^2 (T/\delta)^{\frac{1}{a}}/K \leq \tilde{O} \left(\epsilon_{\mathrm{KL}}^2\right) \\ \mathrm{W}_2^2(q_0,q_{\delta}) &\leq \sigma_{\delta}^2 \leq \epsilon_{W_2}^2 \\ &? \end{split}$$

- $X_t = (1-t)X_0 + tZ, t \in [0,1] \to T = 1$
- Linear Interpolation: $\sigma_\delta^2 = \delta^2 \to \delta = \epsilon_{W_2}$
- Good in T and δ at the same time $\to O\left(1/\epsilon_{\mathrm{KL}}^2 \epsilon_{W_2}^{1/a}\right)$

VP:
$$K = O\left(1/\epsilon_{KL}^2 \epsilon_{W_2}^{2/a}\right)$$
, VE (EDM) $K = O\left(1/\epsilon_{KL}^{2+1/a} \epsilon_{W_2}^{1/a}\right)$

1-Step Consistency Models & InstaFlow

Due to the linear property, RF and VE (EDM) are used as the basic of One-step generation.

Recall: Reverse Process

• Reverse forward process \rightarrow Reverse process (t' = T - t and $Y_{t'} = X_{T-t'}$)

$$Y_{t'} = \left[f(Y_{t'}, T - t') - \frac{1 + \eta^2}{2} g^2(T - t') \nabla \log q_{T - t'}(Y_{t'}) \right] dt' + \eta g(T - t') dB_{t'}, \eta \in [0, 1]$$

• $\eta = 0 \rightarrow$ Reverse probability flow ODE (PFODE, deterministic sampler)

The Paradigm of Consistency Models

• Based on diffusion models, to fast generate:

Consistency models, an one-step generation models

For PFODE

$$dY_{t'} = v(Y_{t'}, t')dt', Y_0 \sim q_T$$

the corresponding mapping function is

$$f^{v}(Y_{t'}, t') = Y_{T-\delta} = X_{\delta}, \forall t' \in [0, T-\delta]$$

• The property of mapping function:

$$f^{v}(Y_{t'}, t') = f^{v}(Y_{t''}, t''), \forall 0 \le t'', t' \le T - \delta$$
$$f^{v}(Y, T - \delta) = Y, \forall Y \in \mathbb{R}^{d}$$

Goal: Consistency function $f_{\theta}(Y_t, t)$

Consistency Distillation (CD) Paradigm:

Let $\hat{Y}_{t'_{k+1}}^{\phi}$ be the output running one step PFODE from $Y_{t'_k}$ with s_{ϕ} .

$$\mathcal{L}_{\mathrm{CD}}^{K}(\boldsymbol{\theta}, \boldsymbol{\theta}^{-}; \boldsymbol{\phi}) := \mathbb{E}_{X_{0}} \left[\mathbb{E}_{Y_{t_{k}^{\prime}} \mid X_{0}} \left\| \boldsymbol{f}_{\boldsymbol{\theta}} \left(Y_{t_{k}^{\prime}}, t_{k}^{\prime} \right) - \boldsymbol{f}_{\boldsymbol{\theta}^{-}} \left(\hat{Y}_{t_{k+1}^{\prime}}^{\boldsymbol{\phi}}, t_{k+1}^{\prime} \right) \right\|_{2}^{2} \right]$$

 $\bullet \ \ \text{Consistency Training:} \ \mathcal{L}_{\mathrm{C}T}^{K}(\boldsymbol{\theta},\boldsymbol{\theta}^{-}) := \mathbb{E}_{X_{0}}\left[\mathbb{E}_{Y_{t_{k}^{\prime}}\mid X_{0}}\left\|\boldsymbol{f}_{\boldsymbol{\theta}}\left(Y_{t_{k}^{\prime}},t_{k}^{\prime}\right) - \boldsymbol{f}_{\boldsymbol{\theta}^{-}}\left(Y_{t_{k+1}^{\prime}},t_{k+1}^{\prime}\right)\right\|_{2}^{2}\right]$

Discretization Complexity of Consistency Models

Objective Function

$$\mathcal{L}_{\mathrm{CD}}^{K}(\boldsymbol{\theta}, \boldsymbol{\theta}^{-}; \boldsymbol{\phi}) := \mathbb{E}_{X_{0}} \left[\mathbb{E}_{Y_{t_{k}^{\prime}} \mid X_{0}} \left\| \boldsymbol{f}_{\boldsymbol{\theta}} \left(Y_{t_{k}^{\prime}}, t_{k}^{\prime} \right) - \boldsymbol{f}_{\boldsymbol{\theta}^{-}} \left(\hat{Y}_{t_{k+1}^{\prime}}^{\phi}, t_{k+1}^{\prime} \right) \right\|_{2}^{2} \right]$$

- Large *K*: Training is time-consuming.
- Small K: Training is hard since $Y_{t_{k'}}$ and $\hat{Y}_{t'_{k+1}}^{\phi}$ is too far away.
- Choosing a suitable K in the training phase to guarantee

$$W_2\left(f_\theta\left(N(0,\sigma_T^2I_d)\right),q_0\right) \le \epsilon_{W_2}$$

Current Discretization Complexity Results

Many works focus on VP models instead of VE (EDM) and RF

Assuming the consistency function f_{θ} (or f_{v}) is L_{f} Lipschitz

They achieve discretization complexity with

- (1) Bad dependence on ϵ : $L_f/\epsilon_{W_2}^7$ [1] and $L_f/\epsilon_{W_1}^{10}$ [2] or
- (2) Large L_f dependence: L_f^3/ϵ_{W_1} [3]
- Far away from the SOTA sample complexity of $1/\epsilon_{W_2}^4$ of diffusion models.

Similar Balance Between δ and T

Theorem. For one-step generation models, using VE(EDM) as a example

$$W_2\left(f_{\theta}\left(N(0,\sigma_T^2I_d)\right),q_0\right) \leq \frac{R^2}{T_{\bullet}} + \frac{L_f R^2(R+\sqrt{d})(T/\delta)^{\frac{1}{d}}}{K\delta^2} + \sqrt{d}\delta$$
0 for RF

- Heavily influenced by $\delta \to VE(EDM)$ and RF is great
- For VE (EDM) $O\left(L_f/\epsilon_{W_2}^{3+2/a}\right) \to \text{Better than previous } L_f/\epsilon_{W_2}^7 \text{ and } L_f^3/\epsilon_{W_1}$
- RF is free from $T \to \operatorname{Better} K = O\left(L_f/\epsilon_{W_2}^{3+1/a}\right)$

Conclusion-Theory

- From the complexity perspective, RF is great in diffusion time T and early stopping δ .
- Future work (Theory):

Many people say flow-matching and score matching is totally equal:

Then, why FM training paradigm is better?

Conclusion-Application

• Future work (Application):

To design a better and efficient noising and denoising process with better theoretical guarantee and great performance.

Thanks! Q&A